Theoretical Studies of $XONO_2-H_2O$ (X = Cl, H) Complexes

Liming Ying and Xinsheng Zhao*

Department of Chemistry, Peking University, Beijing 100871, China

Received: December 16, 1996[®]

The equilibrium structures, harmonic vibrational frequencies and binding energies of $CIONO_2-H_2O$ and $HONO_2-H_2O$ complexes have been investigated with ab initio MP2 and density functional B3LYP methods. The B3LYP method performs better than MP2 methods in predicting the vibrational frequencies of both $CIONO_2$ and $HONO_2$. It is found that the $CIONO_2-H_2O$ complex possesses a near C_s symmetry structure. The ZPE corrected binding energies determined at B3LYP/6-311++G(2df,2p) level for $CIONO_2-H_2O$ and $HONO_2-H_2O$ complexes are 2.2 and 7.2 kcal mol⁻¹, respectively. A possible surface-based heterogeneous reaction mechanism of $CIONO_2$ on water-ice surface is proposed.

I. Introduction

Heterogeneous reactions on the surfaces of polar stratospheric cloud (PSC) particles are now believed to play a central role in the ozone depletion which occur at polar latitudes in the springtime.^{1–3} The surface-catalyzed reactions convert chlorine-containing reservoir species into photochemically active forms:

$$CIONO_2 + H_2O \rightarrow HOCl + HNO_3$$
(1)

$$CIONO_2 + HCl \rightarrow Cl_2 + HNO_3$$
(2)

For instance, reactions 1 and 2 convert chlorine from ClONO₂ and HCl to HOCl and Cl₂, which are photolyzed readily and form chlorine-containing radicals capable of catalytically destroying ozone.^{1,4}

Experimental studies have indicated that the PSCs which act as catalysts for these reactions consist of either nitric acid trihydrate (type I PSC) or water ice (type II PSC).^{5–7} The probabilities of heterogeneous reactions on solid surfaces have been extensively studied. Molina et al.,⁸ Tolbert et al.,⁹ and Leu¹⁰ reported that reactions 1 and 2 proceed readily on cold water—ice surfaces. Further experiment of Hanson and Ravishankara showed that a pure ice surface can be contaminated with the nitric acid that is produced in the reaction.¹¹

Apparently, the knowledge on the gas-phase structures and binding energies of $CIONO_2-H_2O$ and $HONO_2-H_2O$ complexes is essential to the understanding of the mechanism of heterogeneous reactions involving $CIONO_2$. The interaction of $CIONO_2$ with water has been studied by Manna¹² at the Hartree–Fock level with optimization of the geometry parameters directly involved in the interaction (geometry of single molecules are held fixed). It was found that the strongest interaction between $CIONO_2$ and H_2O involves the chlorine atom of $CIONO_2$ and oxygen atom of H_2O . In this paper, we report our theoretical investigations on the molecular structures, vibrational frequencies and binding energies of $CIONO_2-H_2O$ and $HONO_2-H_2O$ complexes. Guided by our calculation, a possible heterogeneous reaction mechanism of $CIONO_2$ on a water–ice surface is proposed.

II. Methods of Calculation

Ab initio and density functional calculations have been performed with the GAUSSIAN 94 $programs^{13}$ on a DEC alpha 3000/300 workstation. Three isomers of ClONO₂-H₂O com-

plex are found and geometrically optimized at HF/6-31G(d) level. The structure that possesses the largest binding energy is further optimized at MP2¹⁴ (frozen core) and B3LYP levels with 6-31G(d) and 6-311G(d,p) basis sets. The B3LYP method uses Becke's three-parameter nonlocal exchange functional¹⁵ with the nonlocal correlation functional of Lee, Yang, and Parr.¹⁶ Vibrational frequencies are obtained to determine the nature of stationary points and for the ZPE corrections to the binding energies. Single point energy calculations are performed at the B3LYP level with several larger basis sets. It is estimated that the error in the binding energy at the highest level calculation is 2.0 kcal mol⁻¹.

III. Results and Discussion

A. Chlorine Nitrate and Nitric Acid. It is now generally accepted that XONO₂ molecules possess planar structures, 17,19,21 and thus only planar structures of ClONO₂ and HONO₂ have been investigated. The equilibrium geometries, dipole moments, and rotational constants of ClONO₂ and HONO₂ obtained at various levels of theory are presented in Tables 1 and 2, respectively. The experimental vibrationally averaged structures, dipole moments and rotational constants are also included for comparison.

For ClONO₂, both B3LYP and CCSD(T)²¹ methods obtain results in agreement with experiment. The largest discrepancy occurs for the Cl-O₁ bond distance, which is 0.03-0.04 Å longer than the experimental value. Lee²¹ attributed this difference to the deficiencies of the basis set. There is no substantial effect on the molecular structure when the basis set is increased from 6-31G(d) to 6-311G(d) with both MP2 and B3LYP methods. The B3LYP/6-31G(d) method gives the results of almost the same quality as higher level CCSD(T)/ TZ2P method. MP2 method does not work satisfactorily for the O₁-N bond length. The dipole moment of ClONO₂ is sensitive to the use of electronic correlation. At the MP2 level using Hartree-Fock density matrix, the calculated values are far from experiment, as can be seen from Table 1. However, if the MP2 density matrix was employed for the dipole moment calculation, Mebel et al.22 obtained a value of 0.76 D at MP2/ 6-31G(d) level of theory, in agreement with the experimental value of 0.77 D.¹⁹ On the contrary, Lee²¹ suspected the reliability of the experimental dipole moment and suggested a different experimental value based on the agreement between the CCSD(T)/TZ2P level calculation and the experiment on the dipole moment of other molecules including several chlorine contained species. However, we also notice that in this case

[®] Abstract published in Advance ACS Abstracts, July 1, 1997.

TABLE 1: Calculated Geometry Parameters, Dipole Moments, and Rotational Constants of ClONO₂ (Distance R in angstroms, Bond Angle α in degrees, Dipole Moment in debye, Rotational Constant in MHz)

parameter MP2/6-31G(d) MP2/6-311G(d) B3LYP/6-31G(d) B3LYP/6-311G(d) CCSD(T)/TZ2P	expt ^a
<i>R</i> (ClO ₁) 1.704 1.706 1.710 1.717 1.707	1.673
$R(O_1N)$ 1.547 1.541 1.502 1.516 1.511	1.499
$R(O_2N)$ 1.203 1.190 1.196 1.186 1.195	1.196
<i>R</i> (O ₃ N) 1.207 1.192 1.199 1.188 1.197	1.196
$\alpha(CIO_1N)$ 111.2 112.0 113.2 113.6 111.9	113.0
α(O ₁ NO ₂) 117.3 117.3 118.0 117.7 117.8	118.6
$\alpha(O_1NO_3)$ 107.7 107.6 108.4 108.2 108.7	108.8
μ 1.44 1.40 1.01 0.94 1.08	0.77
A _e 11622 11849 11980 12059 11981	12106
B _e 2703 2697 2699 2670 2723	2777
C _e 2193 2197 2203 2186 2218	2258

^a Vibrationally averaged structure from ref 17, dipole moment from ref 19, and rotational constants from ref 20. ^b From ref 21.

TABLE 2: Calculated Geometry Parameters, Dipole Moments, and Rotational Constants of HONO₂ (Distance *R* in angstroms, Bond Angle α in degrees, Dipole Moment in debye, Rotational Constant in MHz)

parameter	MP2/6-31G(d)	MP2/6-311G(d)	B3LYP/6-31G(d)	B3LYP/6-311G(d)	$CCSD(T)/TZ2P^b$	expt ^a
$R(HO_{1})$	0.983	0.969	0.979	0.971	0.969	0.964
$R(O_1N)$	1.412	1.407	1.410	1.415	1.418	1.406
$R(O_2N)$	1.226	1.213	1.217	1.210	1.216	1.211
$R(O_3N)$	1.216	1.202	1.203	1.194	1.200	1.199
$\alpha(ClO_1N)$	102.2	102.0	102.6	103.0	101.5	102.2
$\alpha(O_1NO_2)$	115.7	115.7	115.7	115.6	115.4	115.9
$\alpha(O_1NO_3)$	113.6	113.7	113.9	113.9	114.0	113.9
μ	2.74	2.69	2.35	2.31	2.19	2.17
Ae	12643	12909	12878	13031	12909	13011
Be	11983	12135	12050	12049	11992	12100
$C_{\rm e}$	6152	6255	6225	6261	6217	6261

^a Vibrationally averaged structure, dipole moments, and rotational constants from ref 18. ^b From ref 21.

TABLE 3: Fundamental Vibrational Frequencies (cm⁻¹) and IR Intensities (km/mol) of ClONO₂

mode	approx assignment	MP2/6-311G(d)	B3LYP/6-311G(d)	$CCSD(T)/TZ2P^b$	expt ^a
A' ν_1	NO ₂ asym str	1977(191)	1824(348)	1730(343)	1735 vs
ν_2	NO ₂ sym str	1332(238)	1351(293)	1298(254)	1292 vs
ν_3	ClO' str	776(32)	772(6.9)	786(18)	780 ms
$ u_4$	NO ₂ scissors	797(178)	824(197)	813(164)	809 s
ν_5	O'N str	532(94)	556(56)	560(56)	560 s
ν_6	O'NO ₂ ip bend	402(100)	434(19)	434(14)	434 m
ν_7	ClO'N bend	250(1.3)	244(0.3)	256(0.1)	270 vvw
A" ν_8	O'NO ₂ op bend	715(9.7)	724(14)	713(9.0)	711 w
ν_9	ClONO torsion	125(0.9)	133(0.6)	122(0.3)	120

^{*a*} From ref 23. ^{*b*} From ref 21.

TABLE 4: Fundamental Vibrational Frequencies (cm⁻¹) and IR Intensities (km/mol) of HONO₂

mode	approx assignment	MP2/6-311G(d,p)	B3LYP/6-311G(d,p)	$CCSD(T)/TZ2P^b$	expt ^a
A' ν_1	HO' str	3799(93)	3735(91)	3747(85)	3550 m
ν_2	NO ₂ asym str	1903(223)	1779(368)	1722(345)	1710 vs
ν_3	HO'N bend	1366(165)	1327(45)	1310(162)	1304 vs
$ u_4$	NO ₂ sym str	1350(164)	1359(321)	1349(207)	1326 s
ν_5	NO ₂ scissors	919(207)	911(185)	895(154)	879 s
ν_6	O'N str	676(9.7)	654(14)	649(9.3)	647 w
ν_7	O'NO ₂ ip bend	596(10)	588(7.9)	580(9.3)	580 w
A'' ν_8	O'NO ₂ op bend	770(7.8)	777(12)	761(9.5)	763 s
ν_9	HONO torsion	461(134)	480(134)	469(117)	458 m

^{*a*} From ref 23. ^{*b*} From ref 21.

the B3LYP method gives better value of the dipole moment than CCSD(T) method compared to the experiment.

For the geometry parameters of HONO₂, all methods give very good results compared to the experiment, except for the MP2/6-31G(d) level, where the H–O₁ and O–N bond length are 0.01–0.02 Å too long. The quality of B3LYP/6-311G(d,p) method is essentially the same as CCSD(T)/TZ2P method in this case, but the latter performs better in dipole moment calculation.

Calculated fundamental vibrational frequencies and IR intensities of ClONO₂ and HONO₂ are tabulated in Tables 3 and 4, along with the observed gas-phase fundamental frequencies.²³ The B3LYP/6-311G(d,p) method well predicts the vibrational frequencies of ClONO₂ and HONO₂. Mebel et al.²² have reported the vibrational frequencies of ClONO₂ and HONO₂ determined at B3LYP/6-31G(d) level recently. Our results at this level are the same as theirs and are omitted here. Among the CCSD(T), B3LYP, and MP2 methods, CCSD(T) gives the best vibrational frequencies of NO₂ antisymmetric stretch of both ClONO₂ and HONO₂ as well as that of H–O stretch of HONO₂. The MP2 frequencies are somewhat not satisfying in this case.

B. Structures, Vibrational Frequencies, and Binding Energies of ClONO₂-H₂O and HONO₂-H₂O Complexes.

Figure 1. Investigated isomers of the ClONO₂-H₂O complex.

First, three isomers of the ClONO2-H2O complex are investigated at the HF/6-31G(d) level, as depicted in Figure 1. The geometries are fully optimized and vibrational frequencies are determined to characterize the nature of stationary points. Although there might exist other isomers, the isomers considered here cover all three types of interaction, i.e., Cl atom of ClONO2 with O atom of water, O2, O3 atoms of ClONO2 with H atom of water, and O₁, O₃ (or O₂) atoms of ClONO₂ with H atom of water. It is found that isomer I whose equilibrium structure has C_s symmetry holds the largest binding energy, while a planar geometry is merely a transition structure. Isomer II has a planar structure, and isomer III has a nonplanar structure, with ZPE corrected binding energies 3.0 and 1.5 kcal mol⁻¹ less than that of isomer I at HF/6-31G(d) level, respectively. Thus, the conclusion of Manna¹² that the strongest interaction of ClONO₂ with water involves the Cl atom of ClONO₂ and O atom of water is confirmed.

The geometry of isomer I is further optimized at MP2 and B3LYP levels of theory with 6-31G(d) and 6-311G(d,p) basis sets, and the results are shown in Table 5. It is found that the equilibrium structure of the complex maintains C_s symmetry at the MP2 level but slightly deviates from the C_s symmetry at B3LYP level. The complex has almost linear configuration in O–Cl···O. Upon complexation, the most significant change arises in Cl–O₁ and O₁–N bond lengths. Comprehensibly, the

TABLE 5: Calculated Geometry Parameters of ClONO₂-H₂O Complex (Distance *R* in angstroms, Bond Angles α and Dihedral Angles δ in degrees)

8		8	8 ·	
parameter	MP2/ 6-31G(d)	MP2/ 6-311G(d,p)	B3LYP/ 6-31G(d)	B3LYP/ 6-311G(d,p)
$R(ClO_1)$	1.716	1.717	1.742	1.747
$R(O_1N)$	1.499	1.497	1.458	1.470
$R(O_2N)$	1.209	1.195	1.203	1.194
$R(O_3N)$	1.212	1.197	1.205	1.195
$R(O_4Cl)$	2.648	2.670	2.515	2.526
$R(O_4H_1)$	0.970	0.959	0.971	0.964
$R(O_4H_2)$	0.970	0.959	0.971	0.964
$\alpha(ClO_1N)$	111.9	112.6	113.7	114.2
$\alpha(O_1NO_2)$	118.1	117.9	118.7	118.4
$\alpha(O_1NO_3)$	108.7	108.6	109.6	109.4
$\alpha(O_4ClO_1)$	179.8	180.0	179.8	179.3
$\alpha(H_1O_4Cl)$	106.0	106.4	101.1	105.1
$\alpha(H_2O_4Cl)$	106.0	106.4	101.0	105.0
$\alpha(H_1O_4H_2)$	104.4	103.1	104.5	104.9
$\delta(O_2NO_1Cl)$	0.0	0.0	0.0	-0.1
$\delta(O_3NO_1Cl)$	180.0	180.0	180.0	179.9
$\delta(O_4ClO_1N)$	180.0	180.0	180.1	180.2
$\delta(H_1O_4ClO_1)$	124.7	125.2	124.8	119.1
$\delta(H_2O_4ClO_1)$	-124.7	-125.2	-128.0	-130.6

TABLE 6: Calculated Geometry Parameters of HONO₂-H₂O Complex (Distance *R* in angstroms, Bond Angles α and Dihedral Angles δ in Degrees)

0		0	0 ,	
parameter	MP2/ 6-31G(d)	MP2/ 6-311G(d.p)	B3LYP/ 6-31G(d)	B3LYP/ 6-311G(d.p)
		0 0 0 0 0 (0,F)		• • • • • • (-,F)
$R(H_1O_1)$	1.006	0.991	1.010	1.000
$R(O_1N)$	1.380	1.375	1.376	1.380
$R(O_2N)$	1.236	1.222	1.231	1.223
$R(O_3N)$	1.220	1.207	1.206	1.198
$R(O_4H_1)$	1.717	1.690	1.674	1.675
$R(O_4H_2)$	0.974	0.962	0.975	0.967
$R(O_4H_3)$	0.971	0.959	0.970	0.963
$\alpha(H_1O_1N)$	104.5	104.5	105.2	105.3
$\alpha(O_1NO_2)$	117.2	117.0	117.3	117.0
$\alpha(O_1NO_3)$	114.6	114.7	115.1	115.0
$\alpha(O_4H_1O_1)$	172.2	174.5	170.0	171.5
$\alpha(H_2O_4H_1)$	93.9	98.4	90.5	94.7
$\alpha(H_3O_4H_1)$	115.0	121.8	112.2	118.2
$\alpha(H_2O_4H_3)$	105.2	104.7	105.0	106.0
$\delta(O_2NO_1H_1)$	0.0	0.0	-0.4	0.1
$\delta(O_3NO_1H_1)$	180.0	180.0	179.8	180.2
$\delta(O_4H_1O_1N)$	180.0	180.0	181.2	179.7
$\delta(H_1O_4H_1O_1)$	-2.9	0.4	-3.4	-1.9
$\delta(H_2O_4H_1O_1)$	105.8	113.6	103.1	109.1

Cl $-O_1$ bond lengthens and the O_1-N bond shortens since the Cl atom acts as an electron acceptor. Surprisingly, the B3LYP method predicts 0.02 Å more changes in Cl $-O_1$ bond distance than MP2 method. The intermolecular Cl \cdots O₄ distances are 2.52 and 2.65 Å with B3LYP and MP2 methods, respectively, which are almost the same as BrONO₂ $-H_2O$ complex at same levels of theory.²⁴

The strongest interaction of HONO₂ with water must exist in the hydrogen bond of the H atom of HONO₂ with the O atom of water, which can be deduced from the charge distributions of the monomers. Thus, only this isomer is investigated and the structures optimized at MP2 and B3LYP levels with 6-31G(d) and 6-311G(d,p) basis sets are shown in Table 6. The equilibrium structure is illustrated in Figure 2. The planar structure of HONO₂ in the complex maintains at MP2 level of theory, while it slightly deviates from planar structure at B3LYP level of theory. As expected, the O–H···O configuration is near linear; however, it bends toward the O₂ atom of HONO₂ due to the interaction of the H atom of water with the O₂ atom. Only one hydrogen atom of water stretches out of the plane substantially. The hydrogen bond length of the HONO₂–H₂O complex is about 1.68 Å, shorter than that in HOCl–H₂O,²⁵

Figure 2. Structure of the HONO₂-H₂O complex.

TABLE 7: Calculated Fundamental Vibrational Frequencies (cm^{-1}) of $ClONO_2$ -H₂O Complex

mode	approx assignment	MP2/ 6-31G(d)	B3LYP/ 6-31G(d)	B3LYP/ 6-311G(d,p)
1	OH _w asym str	3897	3836	3896
2	OH _w sym str	3760	3717	3796
3	NO2 asym str	1931	1791	1780
4	HOH _w bend	1725	1697	1624
5	NO2 sym str	1314	1352	1341
6	NO ₂ scissors	804	836	839
7	ClO str	775	770	764
8	ONO2 op bend	711	735	741
9	ON str	565	598	579
10	ONO2 ip bend	445	445	439
11	ClO _w wag	336	423	420
12	CION bend	309	405	380
13	ClOH _w rock	261	272	267
14	ClONO torsion	157	176	174
15	ClO _w str	139	175	173
16	dimer torsion	68	77	77
17	dimer rock	66	76	72
18	ClOH _w wag	16	36	25

TABLE 8: Calculated Fundamental Vibrational Frequencies (cm^{-1}) of $HONO_2-H_2O$ Complex

mode	approx assignment	MP2/ 6-31G(d)	MP2/ 6-311G(d,p)	B3LYP/ 6-31G(d)	B3LYP/ 6-311G(d,p)
1	OH _w asym str	3874	3984	3810	3884
2	OH _w sym str	3741	3872	3684	3772
3	HO str	3235	3371	3101	3183
4	NO2 asym str	1873	1872	1791	1766
5	HOH _w bend	1725	1651	1702	1629
6	HON bend	1537	1536	1518	1498
7	NO2 sym str	1372	1368	1357	1339
8	ON str	967	974	966	954
9	HO _w wag	907	907	931	917
10	ONO2 op bend	767	779	780	786
11	NO ₂ scissors	687	707	685	691
12	ONO2 ip bend	650	656	665	654
13	HONO torsion	495	429	547	485
14	HOH _w rock	349	348	372	354
15	HOw str	243	234	260	245
16	dimer torsion	184	164	211	189
17	dimer rock	148	129	164	139
18	HOH., wag	78	72	82	79

 $HOBr-H_2O$,²⁴ and H_2O-H_2O .²⁶ Similarly, the H_1-O_1 bond lengthens and the O_1-N bond shortens upon complexation. Our work indicates that the strength of the interaction between electron donor and electron acceptor plays a central role in XONO₂-H₂O complex conformation.

Harmonic vibrational frequencies have been obtained as shown in Tables 7 and 8. There are only minor changes of the vibrational frequencies of ClONO₂. Since the O₁-N bond distance decreases, the O-N stretch frequency increases by 3%. However, things are different for HONO₂-H₂O complex. Significant changes can be seen in several vibrational modes of HONO₂. The frequency of the H–O stretch decreases by 550 cm⁻¹, whereas the frequency of the O–N stretch increases by 300 cm⁻¹. Other modes such as NO₂ scissors and ONO₂ in plane bend are affected by O–N stretch. The frequency of the XOH_w wagging mode is also an indication of the interaction strength, which is much higher in HONO₂–H₂O complex than in ClONO₂–H₂O complex.

Tables 9 and 10 show the binding energies of $CIONO_2-H_2O$ and $HONO_2-H_2O$ at various levels of theory, where the binding energies are ZPE corrected. Adding d and f polarization functions reduces binding energy substantially, indicating their importance in the energy calculation. Here, the basis set superposition error (BSSE) may be important, and a complete basis set (CBS)²⁷ method could be used to accurately calculate the binding energy. However, it would be too time consuming. The binding energies calculated at B3LYP/6-311G(2df,2p)//B3LYP/6-311G(d,p) level are 2.2 and 7.2 kcal mol⁻¹ after ZPE correction for CIONO₂-H₂O and HONO₂-H₂O complex, respectively.

C. Proposed Mechanism for Stratospheric Heterogeneous Reactions. The reaction mechanisms of ClONO₂ with water and HCl on ice surfaces are not well understood. Wofsy et al.²⁸ suggested that the reaction of ClONO₂ on the surface of PSCs is proton catalyzed. This hypothesis is supported by the ab initio investigation of protonated ClONO₂,²⁹ which indicated that the reaction of proton with ClONO₂ proceeds via two steps: proton sticks to ClONO₂ to form a HOCl···NO₂⁺ complex, which dissociates then to HOCl and NO_2^+ . Van Doren et al.³⁰ actually observed the formation of protonated HONO₂, known to have the structure $H_2O\cdots NO_2^{+31}$ in the gasphase reaction of H₃O⁺ with ClONO₂. It was also found that with one or the other clustered to an NO3⁻ core ion, HCl and ClONO₂ react efficiently in the gas phase to form HONO₂ and Cl₂. In contrast, The NO₃⁻ ion-assisted neutral reaction of ClONO₂ with H₂O to form HOCl and HONO₂ was found to be slow.³⁰ Recently, Mebel et al.²² has proposed an "attachmentdetachment" mechanism for the NO3--catalyzed reactions of ClONO₂ with HCl, which could also be applied to the protoncatalyzed reaction of ClONO2 with H2O. Hanson and Ravishankara^{32,33} showed that the reaction probability γ for ClONO₂ on pure ice to be high on the order of 0.3 and that pure ice surface became contaminated with the nitric acid produced in the reaction. As a result, a decrease in γ of a factor more than 50 occurs. There exists a quite complicated mechanism to explain the decrease of the reaction rate as acidity increases.³⁴ But, the ion-assisted mechanism does not seem to be satisfactory.

Recently, Hanson³⁵ investigated the reactivity of ClONO₂ on ¹⁸O-labeled ice and organic liquids, and evidence for the break of Cl-ONO₂ was given. It is also suggested that dissociation or ionization is not prerequisite for heterogeneous reactions of CIONO₂ because CIONO₂ can efficiently react on the liquid organic surface. On the basis of these results, a six-memberring transition structure for the reaction was proposed.³⁵ The enthalpy for reaction 1 is 1 ± 2 kcal mol⁻¹,³⁵ and the energy change of reaction 2 is calculated at MP2/6-31+G(d) level to be $-7.8 \text{ kcal mol}^{-1.22}$ Mebel et al.²² have found an activation barrier higher than 45 kcal mol⁻¹ for the six-member-ring transition structure for reaction 2. Because of the similarity in reaction pattern and heat of reaction, it is expected that if the six-member-ring structure is the transition structure for reaction 1, it would also have sizable barrier, which is too high to account for the large reaction rate constant.

The above mechanisms were established on the basis of pure gas-phase reactions and did not consider the surface and bulk

TABLE 9: Absolute (hartree) and Binding (kcal mol⁻¹) Energies of ClONO₂-H₂O System

theory level	ClONO ₂	H_2O	ClONO ₂ -H ₂ O	binding energy
MP2/6-311G(d,p) B3LYP/6-311G(d,p) B3LYP/6-311++G(2d,p)//MP2/6-311G(d,p) B3LYP/6-311++G(2df,2p)//MP2/6-311G(d,p) P3LYP/6-311++C(2df,2p)//MP2/6-311G(d,p)	-739.286 85 -740.516 46 -740.540 43 -740.553 13 -740.540 64	-76.263 97 -76.447 45 -76.459 31 -76.462 40 -76 450 53	-815.559 30 -816.975 87 -817.007 07 -817.022 05 -817.007 38	3.6 5.8 2.9 2.4 2.8
$B_{3LYP/6-311}++G(2df,2p)//B_{3LYP/6-311G(d,p)}$ $B_{3LYP/6-311}++G(2df,2p)//B_{3LYP/6-311G(d,p)}$	-740.540.64 -740.553.34	-76.462 57	-817.022 00	2.8 2.2

TABLE 10:	Absolute (hartre	e) and Binding (kca	al mol ⁻¹) Energies o	of HONO ₂ -H ₂ O System
-----------	------------------	---------------------	-----------------------------------	---

theory level	HONO ₂	H ₂ O	HONO ₂ -H ₂ O	binding energy
MP2/6-311G(d,p)	-280.312 82	-76.263 97	-356.597 29	10.6
B3LYP/6-311G(d,p)	-280.96737	-76.447 45	-357.437 13	11.7
B3LYP/6-311++G(2d,p)//MP2/6-311G(d,p)	-280.98722	-76.459 31	-357.462 83	7.9
B3LYP/6-311++G(2df,2p)//MP2/6-311G(d,p)	-280.996 53	-76.46240	-357.474 37	7.4
B3LYP/6-311++G(2d,p)//B3LYP/6-311G(d,p)	-280.98737	-76.459 53	-357.462 98	7.8
B3LYP/6-311++G(2df,2p)//B3LYP/6-311G(d,p)	-280.99674	-76.462 57	-357.47450	7.2

properties. We must bear in mind that the structure of the water-ice surface should play significant roles in the heterogeneous reaction of ClONO2. Up to now, our understanding of the interfacial properties of water is rather primitive. Sumfrequency generation experiments on the air-water interface done by Shen's group^{36,37} indicated that about one-fourth of the OH points out of the liquid (free OH bond), and the others are not free. Inspired and guided by our calculation, we propose a possible mechanism concerning the reaction of ClONO₂ with water on the ice surface. To reach our proposal, let us first consider the energetics if more water molecules are involved in the reaction, which certainly is the case on the ice surface. If both reactants and products are complexed with water molecules, e.g., if the reaction

 $CIONO_2 \cdot H_2O + H_2O \cdot H_2O \rightarrow$ $HONO_2 \cdot H_2O + HOCl \cdot H_2O$ (3)

is considered, from the ZPE corrected binding energy provided here $(\Delta E[\text{CIONO}_2 \cdot \text{H}_2\text{O}] = -2.2 \text{ kcal mol}^{-1}, \Delta E[\text{HONO}_2 \cdot \text{H}_2\text{O}]$ = -7.2 kcal mol⁻¹) and other places ($\Delta E[H_2O \cdot H_2O] = -3.2$ kcal mol⁻¹,³⁸ ΔE [HOCl·H₂O] = -5.9 kcal mol^{-1 25}) and by assuming that all species on the ice surface were at their most stable complexation, we would estimate that the energy change of reaction 3 were about 7 kcal mol⁻¹ more exothermic than that of reaction 1. Next, let us recall a very important wellknown fact that the proton transmission through hydrogen bond is very effective in water or ice even at low temperature, because of the low barrier and the proton tunneling. Therefore, if the atoms of both the reactants and the products are at appropriate spatial position, reaction 3 can readily go through a circle bridged by a few water molecules. When putting our calculated geometries and reasonable model of water surface together, it was found that this mechanism could be operative. With this mechanism all aforementioned phenomena can be explained. For example, the reaction need two free surface water molecules, if it is contaminated by HONO2, the reaction will slow. Therefore, as observed, γ for ClONO₂ on HONO₂-treated ice or NAT (nitric acid trihydrate) is 2-3 orders of magnitude smaller than that on pure ice.³³ In this case, use of the "attachment-detachment" mechanism is difficult to deduce the experimental results, contrarily it may infer that the reaction probability will increase because of the high concentration of HONO₂. In addition, our theoretical investigations of BrONO₂-H₂O²⁴ have shown that BrONO₂ possesses stronger interaction energy with water. Therefore, the uptake coefficient of BrONO₂ on the ice surface may be greater than that of ClONO₂. Currently we are investigating the details of the proposed

mechanism through ab initio calculation. Preliminary results indicate that the future is promising.

IV. Conclusion

We have investigated the equilibrium structures, harmonic vibrational frequencies and binding energies of ClONO₂-H₂O and HONO₂-H₂O complexes with ab initio MP2 and density functional B3LYP methods. It is shown that B3LYP method performs better than MP2 method in determining the vibrational frequencies of both ClONO₂ and HONO₂. The most stable form of ClONO₂ $-H_2O$ complex possesses C_s symmetry with ClONO₂ maintaining a planar structure at the MP2 level of theory but slightly deviates from it at the B3LYP level of theory, in which the oxygen atom of water acts as an electron donor and Cl atom acts as an electron acceptor. The HONO₂-H₂O complex has a structure of almost all atoms lying in a plane except one hydrogen atom of water. The ZPE corrected binding energies determined at B3LYP/6-311++G(2df,2p) level for ClONO₂- H_2O and $HONO_2-H_2O$ complexes are 2.2 and 7.2 kcal mol⁻¹, respectively. A possible surface-based heterogeneous reaction mechanism of ClONO2 on a water-ice surface has been suggested, in which the surface structure of the ice plays a key role. This mechanism is in agreement with the known experimental facts.

Acknowledgment. The authors wish to thank Mr. Sichuan Xu for very stimulating discussions. This work has been supported by NSFC under project No. 29425004.

References and Notes

(1) Solomon, S. Rev. Geophys. 1988, 26, 131.

(2) Solomon, S.; Garcia, R. R.; Rowland, F. S.; Wuebbles, D. J. Nature 1986, *321*, 755.

(3) Brune, W. H.; Anderson, J. G.; Toohey, D. W.; Fahey, D. W. Science 1991, 252, 1260.

(4) Anderson, J. G.; Toohey, D. W.; Brune, W. H. Science 1991, 252, 39

(5) Toon, O. B.; Hamill, P.; Turco, R. P.; Pinto, J. Geophys. Res. Lett. 1986, 13, 1284.

(6) Crutzen, P. J.; Arnold, F. Nature 1986, 324, 651.

(7) Abbatt, J. P. D.; Molina, M. J. J. Phys. Chem. 1992, 96, 7674.

(8) Molina, M. J.; Tso, T.; Molina, L. T.; Wang, F. C. Y. Science 1987, 238, 1253.

(9) Tolbert, M. A.; Rossi, M. J.; Malhotra, R.; Golden, D. M. Science 1987, 238, 1258.

(10) Leu, M. T. Geophys. Res. Lett. 1988, 15, 17.

(11) Hanson, D. R.; Ravishankara, A. R. J. Geophys. Res. 1991, 96, 5801

(12) Manna, G. L. J. Mol. Struct. (THEOCHEM) 1994, 309, 31.

(13) Gaussian 94, Revision B.3; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.;

Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A.; Gaussian, Inc.: Pittsburgh PA, 1995.

(14) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

(15) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648. (b) Becke, A. D. J. Chem. Phys. **1992**, 96, 2155. (c) Becke, A. D. J. Chem. Phys. **1992**, 97,

9173. (16) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. **1988**, B37, 785.

(17) Casper, B.; Lambotte, P.; Minkwitz, R.; Oberhammer, H. J. Phys.

Chem. 1993, 97, 9992.

(18) Cox, A. P.; Riveros, J. M. J. Chem. Phys. 1965, 42, 3106.

- (19) Suenram, R. D.; Johnson, D. R. J. Mol. Spectrosc. 1977, 65, 239.
- (20) Suenram, R. D.; Lovas, F. J. J. Mol. Spectrosc. 1984, 105, 351.
- (21) Lee, T. J. J. Phys. Chem. 1995, 99, 1943.
- (22) Mebel, A. M.; Morokuma, K. J. Phys. Chem. 1996, 100, 2985.
- (23) Jacox, M. E. J. Phys. Chem. Ref. Data 1994, Monograph No. 3.
- (24) Ying, L.; Zhao, X. J. Phys. Chem. A 1997, 101, 3569.
- (25) Dibble, T. S.; Francisco, J. S. J. Phys. Chem. 1995, 99, 1919.

(26) Xantheas, S. S.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 99, 8774.
(27) Ochterski, J. W.; Peterson, G. A.; Montgomery, J. A. Jr. J. Chem. Phys. 1996, 104, 2598.

(28) Wofsy, S. C.; Molina, M. J.; Salawitch, R. J.; Fox, L. E.; McElroy, M. B. J. Geophys. Res. **1988**, 93, 2442.

(29) Lee, T. J.; Rice, J. E. J. Phys. Chem. 1993, 97, 6637.

(30) Van Doren, J. M.; Viggiano, A. A.; Morris, R. A. J. Am. Chem. Soc. 1994, 116, 6957.

(31) Lee, T. J.; Rice, J. E. J. Phys. Chem. 1992, 96, 650.

(32) Hanson, D. R.; Ravishankara, A. R. J. Geophys. Res. 1991, 96, 5801.

(33) Hanson, D. R.; Ravishankara, A. R. J. Phys. Chem. 1992, 96, 2682.

- (34) See, for example: Molina, M. J.; Molina, L. T.; Kolb, C. E. Annu. Rev. Phys. Chem. **1996**, 47, 327.
- (35) Hanson, D. R. J. Phys. Chem. 1995, 99, 13059.
- (36) Du, Q.; Superfine, R.; Freysz, E.; Shen, Y. R. Phys. Rev. Lett. 1993, 70, 2313.
 - (37) Du, Q.; Freysz, E.; Shen. Y. R. Science 1994, 264, 826.
- (38) Feyereisen, M. W.; Feller, D.; Dixon, D. A. J. Phys. Chem. 1996, 100, 2993.